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Abstract. We consider the asymptotic behaviour of the Chern-Simons Green’s function of the ν = 1/φ̃
system for an infinite area in position-time representation. We calculate explicitly the asymptotic form of
the Green’s function of the interaction free Chern-Simons system for small times. The calculated Green’s
function vanishes exponentially with the logarithm of the area. Furthermore, we discuss the form of the di-
vergence for all τ and also for the Coulomb interacting Chern-Simons system. We compare the asymptotics
of the exact Chern-Simons Green’s function with the asymptotics of the Green’s function in the Hartree-
Fock as well as the random-phase approximation (RPA). The asymptotics of the Hartree-Fock Green’s
function correspondence well with the exact Green’s function. In the case of the RPA Green’s function we
do not get the correct asymptotics. At last, we calculate the self consistent Hartree-Fock Green’s function.

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) –
73.43.-f Quantum Hall effects – 71.27.+a Strongly correlated electron systems; heavy fermions

1 Introduction

The combination of an electronic interaction and a strong
magnetic field in a two-dimensional electron system yields
a rich variety of phases. These are best classified by the
filling factor ν, which is the electron density divided by the
density of a completely filled Landau level. In this paper,
we consider systems with filling fraction ν = 1/φ̃ where
φ̃ is an even positive number. These systems are most
suitably described by the Chern-Simons theory. Since the
discovery of the fractional quantum Hall effect by Tsui
et al. [1] there were many attempts to explain this experi-
mental observation. The contemporary theoretical picture
of this effect is mainly based on a work of Jain [2]. In his
theory he mapped the wave functions of the integer quan-
tum Hall effect to wave functions of the fractional quan-
tum Hall effect. In the case of filling fraction ν = 1/2 ev-
ery electron gets two magnetic flux quantums through this
mapping. With the help of this transformation new quasi-
particles (composite fermions) are obtained which do not
see any magnetic field in first approximation (mean field).
A field theoretical language for this scenario was first es-
tablished by Halperin, Lee, Read (HLR) [3], as well as
Kalmeyer and Zhang [4] for the ν = 1/2 system. The in-
terpretation of many experiments supports this composite
fermion picture. We mention transport experiments with
quantum (anti-) dots [5], and focusing experiments [6]
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here. An overview of further experiments can be found
in [7].

HLR studied many physical quantities within the
random-phase approximation (RPA). Most prominent
among these is the effective mass of the composite
fermions which they found to diverge at the Fermi sur-
face [3,8]. This is based on the interaction of the com-
posite fermions via transversal gauge interactions. Later
on, Shankar and Murthy [9] proposed a new theory of
the ν = 1/2 system. Based upon a transformation of the
Chern-Simons Hamiltonian one achieves a separation of
the magneto-plasmon oscillators from the total interac-
tion of the system. After restricting the number of the
magneto-plasmon oscillators to the number of electrons
Shankar and Murthy got a finite quasi-particle mass which
scales with the inverse of the strength of the Coulomb re-
pulsion. In their derivation they calculated a smaller num-
ber of self energy Feynman diagrams than in the RPA.
Recently Stern et al. [10] calculated the self energy of the
theory of Shankar and Murthy in RPA finding the same
divergence of the effective mass as HLR. Besides the the-
ories of HLR and Shankar and Murthy there are other al-
ternative formulations of the Chern-Simons theory which
looks similar to the Chern-Simons theory of Shankar and
Murthy [11].

In this paper, we consider the asymptotic behaviour
of the ν = 1/φ̃ Chern-Simons Green’s function for an in-
finite area A non-perturbationally. It is well known that
the Hartree-Fock approximation [12] as well as the RPA [3]
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of the Chern-Simons Green’s function results in a log(A)
singularity in the momentum-frequency representation
(q, ω) of the self energy. This singularity is caused by
the interaction of the composite fermions through a longi-
tudinal gauge field (in contrast to the effective mass). In
almost all calculations of the effective mass of the com-
posite fermions this singularity is not taken in to account
although one can easily show that this log(A) singularity
enforces the effective mass to be finite (the bare mass).
Furthermore, this singularity of the self energy is not only
given on the Fermi-surface but for all momenta (apart
from the Fermi-surface). The neglection of the log(A) sin-
gularity in the calculation of the effective mass is justified
by the physical argument that it must scale with the in-
verse of the Coulomb interaction [3]. By neglecting this
singularity one gets the correct scaling. This was the rea-
son that till now almost all authors disregard the log(A)
singularity and try to get rather a better physical insight
into the effective mass singularity caused by the transverse
gauge interaction ([13] and references therein). From the
point of view that the Chern-Simons theory is a many-
body theory for which physical quantities are calculated
by known perturbative methods (although no small pa-
rameter is present) this procedure is not satisfactory. On
the way to integrate this singularity in a Chern-Simons
perturbation theory or to formulate a Chern-Simons the-
ory without this Green’s function divergence, we will in-
vestigate the log(A) singularity in this paper. The aim of
our investigation is to get rather exact statements about
this singularity and the relation of perturbative calculated
Green’s functions to the exact Green’s function.

HLR [3,14] gave in their paper a semi-classical rea-
son for the log(A) singularity by showing that the Chern-
Simons transformation effectively gives a velocity boost to
every electron. This velocity boost results in a one parti-
cle energy which diverges proportional to log(A). Unfor-
tunately, the derivation of HLR is based on semi-classical
approximations. To our knowledge there are no publica-
tions which show without approximations that the log(A)
singularity is really existent in the Green’s function or
even how it looks like. In this paper, we will calculate the
asymptotics of the Chern-Simons Green’s function in the
position-time (r, τ) representation. The asymptotics will
be computed concretely for the interaction free ν = 1/φ̃
Chern-Simons system for all r and small τ . We will show
exactly that the Green’s function vanishes for A → ∞.
Furthermore, we will discuss the form of the divergence for
all τ and also for the Coulomb interacting Chern-Simons
system. It is clear that perturbational calculations of phys-
ical quantities such as the energy should start with Green’s
and vertex functions which are in rather good agreement
with the exact functions. To obtain a good approximation
of the Chern-Simons Green’s function, we will calculate
it in two different approximations. First, we will calcu-
late the Hartree-Fock Green’s function. We will show that
the asymptotic behaviour of this Green’s function is in
good agreement with the asymptotic behaviour of the ex-
act Green’s function. Then we will calculate the Chern-
Simons Green’s function in RPA. We will show that this

Green’s function is finite for A→∞ (modulo logarithmic
singularities), which is not in agreement with the exact
Green’s function. On the way to formulate a perturba-
tion theory around the Hartree-Fock mean field, we will
examine at last the self consistent Hartree-Fock Green’s
function.

In the following derivation of the Chern-Simons
Green’s function, we will keep the formulas as general as
possible. This will be done to simplify the extension of
the concrete calculation of the asymptotics of the Green’s
function G(r, τ) also for large τ in a later publication. In
this publication, we restrict our calculation of the Green’s
function to the range of small τ because this τ range
is most relevant for a calculation of physical quantities
(the Green’s function decreases by physical arguments for
larger τ). Furthermore, we restrict our calculations to the
case temperature T = 0.

The paper is organized as follows:
In Section 2, we will calculate the asymptotic behaviour of
the Chern-Simons Green’s function G(r, τ). In Section 3,
we will calculate the self consistent Chern-Simons Green’s
function in Hartree-Fock approximation as well as in RPA
and compare these approximations with the exact Chern-
Simons Green’s function calculated in Section 2.

2 The asymptotic behaviour
of the Chern-Simons Green’s function

In this paper we consider interacting spin polarized elec-
trons moving in two dimensions in a strong magnetic
field B directed in the negative z-direction of the system.
The electronic density of the system is chosen such that
the lowest Landau level of a non-interacting system is filled
to a fraction ν = 1/φ̃ where φ̃ is an even number. We are
mainly interested in φ̃ = 2. The composite fermion anni-
hilation operator Ψ(r) is defined from the electronic anni-
hilation operator Ψe(r) through the Chern-Simons trans-
formation [15] (α(r) is the angle between the x-axes and
the position r)

Ψ(r) = e−iφ
R

d2r′α(r−r ′)Ψ+(r ′)Ψ(r ′)Ψe(r). (1)

The Hamiltonian of the composite fermions is then
given by:

HCS =
∫

d2r

[
1

2m

∣∣(− i∇+A+ aCS

)
Ψ(r)

∣∣2
+

1
2

∫
d2r′

{
(|Ψ(r)|2 − ρB)V ee(|r− r ′|)(|Ψ(r ′)|2 − ρB)

}]
.

(2)

The Chern-Simons vector potential aCS is defined by
aCS(r) = φ̃

∫
d2r′ f(r − r ′)Ψ+(r ′)Ψ(r ′). m is the mass

of an electron. V ee(r) = e2/r is the Coulomb interaction
where e2 = q2

e/ε. qe is the charge of the electrons and
ε is the dielectric constant of the background field ρB.
A(r) is the vector potential A = 1/2B × r and B is
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a homogeneous magnetic field in the negative z-direction
B = −Bez , where ez is the unit vector in z-direction. We
suppose throughout this paper that B is a positive num-
ber. The function f(r) is given by f(r) = ez × r/r2. We
used the convention ~ = 1 and c = 1 in the above formula
(2). Furthermore, we set qe = 1 for the coupling of the
magnetic potential to the electrons. The Green’s function
of the Chern-Simons theory is defined as

G(r, t; r ′, t′) = 〈T [Ψ(r, t), Ψ+(r ′, t′)]〉CS . (3)

〈·〉CS is the average over the Gibb’s operator of HCS. T
is the time ordering operator. Applying the inverse of the
Chern-Simons transformation (1) to the operator HCS, we
get the electronic Hamiltonian He. He is given by HCS (2)
via the substitutions aCS = 0, Ψ → Ψe and Ψ+ → Ψ+

e .
As mentioned in the introduction, we will at first cal-

culate the N particle Green’s function for Vee = 0. Under
this restriction the ground state of He is degenerate. The
ground state wave functions are given by

u0,p = S[up1 , up2 , · · · , upN ] . (4)

S is the Slater determinant of the one particle wave func-
tions up1 , .., upN . up are the one particle wave functions in
the lowest Landau level in the symmetric gauge

up(r, φ) =
√

1
2p+1 p! π

eipφ rp e−
1
4 r

2
. (5)

In equation (4), we have p ∈ 0 . . . φ̃N (for finite A). Fur-
ther, we use the simplifications B = 1, m = 1. This will be
done throughout this section in the auxiliary equations.
For equations which have the character of a result, we
will insert the B and m dependencies explicitly. In the
following, we have to calculate the expectation values of
certain differential-position operators with respect to the
ground state wave functions. Since the norm of up is one
we obtain for the expectation value of every differential
operator of first order with respect to up a multiplicative
factor

√
p in the result. We get the same multiplicative

factor
√
p for every position operator in the differential-

position operator. Thus, we can easily read off the lead-
ing p dependence of the average of a differential-position
operator with respect to a lowest Landau level wave func-
tion up. Similarly, one can calculate the result of the aver-
age of a differential-position operator over the many par-
ticle ground state wave function u0,p.

In order to calculate the asymptotic behaviour of the
Green’s function (3), we have organized this section as
follows: In Section 2.1, we will calculate the asymptotics
of the Green’s function G(r, τ) for r = 0 and τ > 0. In
Section 2.2 we will extend the calculation to r 6= 0. In
Section 2.3, we take the average of the asymptotic ex-
pressions of Sections 2.1, 2.2 with respect to the ground
states of filling fraction ν = 1/φ̃. The asymptotics of the
Green’s function G(r, τ) for τ < 0 will be calculated in
Section 2.4. In Section 2.5, we consider the Chern-Simons
Green’s function by taking into account the Coulomb in-
teraction between the electrons.

2.1 The calculation of the asymptotic behaviour
of the Chern-Simons Green’s function G(0, τ)τ>0

In this subsection, we calculate the asymptotics of the
Chern-Simons Green’s function G(0, τ)τ>0 for τ > 0. In
the following, we apply the inverse of the Chern-Simons
transformation to the expression (3). The result will be
represented in the one particle basis. We get

G(r, t; r ′, t′) =
e((t−t′)−β)( 1

2−µ)N

Z
(6)

×
∑

u0,k∈ν1/φ̃

∣∣∣∣A[u0,k(r1, .., rN ) δr(rN+1)
]∣∣∣∣

exp

[
−iφ̃

(
N+1∑
i=1

α(ri − r)− α(ri − r ′)
)]

∣∣∣∣A[ exp
[
− (t− t′)

(
HN+1 +HN+1

)]
u0,k(r1, .., rN ) δr ′(rN+1)

]〉
·

The Hamilton operators HN+1, HN+1 are given by

HN+1 =
1
2

[
−i∇N+1 +A(rN+1) + φ̃

N∑
i=1

f(rN+1 − ri)
]2

,

HN+1 =
N∑
i=1

1
2

[
−i∇i +A(ri) + φ̃f(ri − rN+1)

]2
. (7)

Here β = 1/(kBT ) where kB is the Boltzmann constant. Z
is the partition function of the Hamiltonian He. A is the
antisymmetrization operator. ν1/φ̃ are the ground states
of the ν = 1/φ̃ system. We split HN+1 + HN+1 in its
components HN+1 +HN+1 = H0 +H1 +H2 +H3 +H4,1 +
H4,2 by

H0,1 =
N∑
i=1

1
2

[−i∇i +A(ri)]
2 − µ , (8)

H0,2 =
1
2

[−i∇N+1 +A(rN+1)]2− µ, (9)

H1 =
N∑
i=1

φ̃2f(ri − rN+1)2 , (10)

H2 =
1
2

N∑
i6=j=1

φ̃2f(ri − rN+1)f(rj − rN+1), (11)

H3 =
N∑
i=1

A(ri)φ̃f(ri − rN+1)−A(rN+1)φ̃f(ri − rN+1)

= −N φ̃

2
, (12)

H4,1 =
N∑
i=1

φ̃f(ri − rN+1)
∇i

i
, (13)

H4,2 = −
N∑
i=1

φ̃f(ri − rN+1)
∇N+1

i
· (14)
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In (12), we inserted the vector potential A in the sym-
metric gauge A(r) = 1

2

(
y
−x
)
. Since we have the transla-

tion invariance [3] of the Chern-Simons Green’s function
at the filling fraction ν = 1/φ̃ it is possible to fix r = 0. To
calculate the asymptotic behaviour of the Chern-Simons
Green’s function, we use the cumulant theorem〈

eA
〉

= e〈A〉c+
1
2 〈A

2〉c+ 1
3! 〈A

3〉c+... (15)

The ‘connected’ expectation values are defined by 〈A〉c =
〈A〉 , 〈A2〉c = 〈(A− 〈A〉)2〉 , 〈A3〉c = 〈(A− 〈A〉)3〉 , . . .

We now split the Chern-Simons Green’s functions in
two parts G(r, t, r ′, t′) = G1(r, t, r ′, t′) + G2(r, t, r ′, t′).
G1(r, t, r ′, t′) is the relevant term for r → r ′ and has the
form h(t− t′,∇r′) exp[−(t− t′)1/2[−i∇r′+A(r ′)]2]δ(r−
r ′). h(t − t′,∇r′) is a power series in the derivations in
r ′ with prefactors in (t − t′). G2(r, t, r ′, t′) is a regular
function (not of a distributional form). In the following,
we will only calculate the constant coefficient of the power
series h in ∇r′ . We will see in subsection D that G con-
sists only on G2 for the time ordering t− t′ < 0. Since the
ground state energy can be calculated from the Green’s
function with this ordering [18], we are especially inter-
ested in that case. A second reason for calculating only
the constant coefficient of the power series h(t − t′,∇r′)
is that we are primary interested in a comparison of an
approximative Green’s function (see Sect. 3) with the ex-
act Green’s function for small |t− t′|. In a perturbational
calculation of physical quantities one commonly has to
calculate integrals of a function of Green’s functions. The
main contribution of the Green’s functions to these inte-
grals is given for small |t− t′| (the Green’s function tends
to zero for large |t− t′|). Thus the approximated Green’s
function should be rather exact in this range. We will see
at the end of this subsection that the higher order powers
of h in ∇r′ contribute only on order O(|t − t′|2).

In this subsection, we will calculate G1(r, t, r ′, t′).
With the the help of a binomial expansion of the prod-
ucts as well as the form of the normalized lowest Landau
level wave functions (5), we get

〈
up
∣∣ [−1 +

(
2f(r)

∇r
i

)2
]n′ [

−1 + 2f(r)
∇r

i

]n
(16)

×
[
2f(r)

∇r

i

]l 1
rm

[r
r
∇r

]m ∣∣up〉 = δm,0 δn,0 δn′,0

+
1
p

[
− δm,2

1
4
δn,0 δn′,0

+δm,1

{
1
2
δn′,0 δn,1 + δn′,1 δn,0 +

1
2
lδn,0 δn′,0

}
+δm,0

{
δn′,2 4 δn,0 + δn′,1 (2δn,1 + (2l + 1)δn,0)

+δn′,0

(
δn,2 + l δn,1 +

(l2 − l)
2

δn,0

)}]
+O

(
1
p2

)
·

This relation is useful for getting the cumulant expectation
values (15) in an easy way. For calculating the average val-

ues in (6) we consider in the following only terms behaving
like

∑
1/p (this sum diverges for A → ∞). Terms of the

form
∑
O(1/p2) are convergent. At first, we neglect H0 in

HN+1+HN+1. So we have to calculate the connected aver-
age values of the form 〈|(H1+H2+H3+H4,1+H4,2)n|〉c. By
neglecting finite terms of the form

∑
O(1/p2) we get with

the help of equation (16) the following diverging terms:

〈u0,k |H2|u0,k〉c = −1
4
φ̃2

∑
up,up+1∈u0,k

1
p
,

〈u0,k |H1|u0,k〉c =
1
2
φ̃2
∑

up∈u0,k

1
p
, (17)

〈u0,k |(H3 +H4,1)n|u0,k〉c = δn,2
1
4
φ̃2
∑

up∈u0,k

1
p
·

We see from the first term of this equation that we have
also summations over nearest neighbour p. Now we take
into account the operator H0 in the calculation of the
connected average values. For doing this, we will use the
Campbell-Hausdorff formula

eC = eB · eA , (18)

with

B = (C −A) +
1
2

[A,C] +
1
12

[C +A, [A,C]] (19)

− 1
24

[A, [C, [A,C]]] +O([, [, [, [, []]]]]) .

We now fix C = −(HN+1 + HN+1)τ and A = −H0τ in
equation (18). With the help of the Campbell-Hausdorff
formula (18) and the cumulant theorem (15) one can dis-
cuss the connected average values in B. This results in a
power series in τ = (t− t′). We will show later on in this
subsection that this power series will not terminate. Be-
cause of the enormous effort of calculation, we will limit
ourselves to the concrete calculation of the coefficients up
to the order τ3. It will be the aim of a later publication
to make predictions of these coefficients for higher powers
of τ and further on the behaviour of this power series for
large τ .

The relevant cumulant expectation values for calcu-
lating the coefficients up to the order τ3 are shown in
Appendix A. With the help of these cumulant expecta-
tion values and the Campbell-Hausdorff formula (18), we
get for the asymptotics of the Green’s function for τ > 0:

G1(r, τ)τ>0 =
∑

u0,k∈ν1/φ̃

exp
[
φ̃2

{ ∑
up∈u0,k

1
p

(
− 1

2
τ +

1
8
τ2

− 1
48
τ3 +O(τ4)

)
+O

(
1
p2

)
(20)

+
∑

up,up+1∈u0,k

1
p

(
1
4
τ− 1

48
τ3+O(τ4)

)
+O

(
1
p2

)}]
1∑

u0,k∈ν1/φ̃

1

× exp
[
−τ 1

2
[−i∇r +A(r)]2

]
δ(r).
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We see from equation (20) that the cumulant expectation
values up to the order τ3 behave like

∑
up∈u0,k

O(1/p) +∑
up,up+1∈u0,k

O(1/p). In the following, we will show that
equation (20) is correct for all orders of τ . For doing this,
we consider the operator H0,1 in polar coordinates:

H0,1 =
N∑
i=1

1
2

[
− 1
ri
∂ri − ∂2

ri +
(
− 1
r2
i

∂2
φi + i∂φi +

r2
i

4

)]
.

(21)

The expectation value of the commutator of the opera-
tor (1/ri)∂ri with the last three summands of (21) re-
sults in the first factor on the left hand side in (16). Fur-
thermore, one sees that the second term of the product
in (16) corresponds to (H3 + H4,1). Thus, we get from
(16) and the form of H0,1 that by neglecting H0,2 and H4,2

in HN+1 +HN+1 the cumulant expectation values of the
Campbell-Hausdorff terms behave like

∑
up∈u0,k

O(1/p)+∑
up,up+1∈u0,k

O(1/p). In the following, we consider the
cumulant expectation values of B (19) containing at least
one of the terms H0,2, H4,2. It is clear by having more
than two terms H4,2 in the cumulant expectation value,
we get as a result a convergent sum

∑
O(1/p2). The num-

ber of operators H0,2 is arbitrary. Thus, we can limit our
consideration to one or two operators H4,2 in the cumu-
lant expectation value. Because of the simple structure of
HN+1 +HN+1 we get as a result of the cumulant expecta-
tion value a term of the form

∑
up∈u0,k

(a1/p+O(1/p2))+∑
up,up+1∈u0,k

(a2/p + O(1/p2)). Here a1, a2 are real co-
efficients. Summarizing, we see that the exponent of the
Green’s functions G1(0, τ)τ>0 behaves like (20).

2.2 The asymptotic behaviour of the Chern-Simons
Green’s function G(r, τ)τ>0 for r 6= 0

In this section, we calculate G(r, τ)τ>0 for τ > 0 and
r 6= 0. Because of the additional phase factor, we get
from equation (6) that the calculation of the asymptotic
behaviour of the Green’s function for r 6= 0 is substantially
more difficult than for r = 0. To handle this phase factor
we define

exp [M [N ′]] := exp

iφ̃

 N ′∑
i=1

α(ri − r ′)− α(ri − r)


= exp

[
iφ̃
( N ′∑
i=1

f(ri − r ′) · (r − r ′) (22)

+(f(ri − r ′) · ex) (ey · f(ri − r ′))
×
(
((r − r ′) · ex)2 − (ey · (r − r ′))2

)
+O
(

1
|ri − r ′|3

))]
.

with 0 ≤ N ′ ≤ N . ex and ey, respectively, are unit vectors
in the x- and y-direction, respectively. When calculating

the Green’s function (6), we get one term which is propor-
tional to δ(r − r ′). This term was calculated in the last
subsection. Additionally, we get

G2(r, t; r ′, t′) = −e((t−t′)−β)( 1
2−µ)N

Z
(23)

×
∑

u0,k∈ν1/φ̃

∑
uL,uR∈u0,k

〈
VL[u0,k]|eM[N−1]e−(t−t′)H2 |VR[u0,k]

〉
×
(

e−(t−t′) 1
2 [−i∇r′+A(r ′)−φ̃f(r ′−r)]2uL(r ′)

)
×
(

e−(t−t′) 1
2 [−i∇r+A(r)+φ̃f(r−r ′)]2uR(r)

)
with

H2 =
N−1∑
i=1

1
2

[
−i∇ri +A(ri) + φ̃f(ri − r ′)

]2
(24)

Vp[u0,k] is defined by

Vp[u0,k] = u0,k′

N∑
i=1

(−1)i+1 δp,ki . (25)

k′ ∈ RN−1 is up to the entry which contains p given by
the vector k. In the following, we will transform (23) such
that we can use the results of the last subsection. For doing
this, we define the following operators:

Oγ := γ
(

e−τ
1
2 [−i∇r′+A(r ′)−φ̃f(r ′−r)]2

×
N∑
i=1

P [r ′ − r] (ri) δ(ri − r)
)
,

P [r ′ − r] (ri) := 1 + (r ′ − r) ·∇i +
1
2
. . . , (26)

HM(γ, τ) := HN+1 −
1
τ
Oγ −

1
τ
M [N ] . (27)

The operator P [r ′−r](ri) is a translation operator which
yields by applying it to a function f(ri) the translated
function f(ri + r ′ − r). Let us suppose that R is a power
expansion of the operators Oγ , M [N ] and further on other
operators. Then we define the normal ordering of the op-
erator : R : such that all operators Oγ are at the left of
the monomials and the following operators are the M [N ].
With the help of the function

FM [γ, τ ] := exp
[
− τ 〈|: HM (γ, τ) :|〉c (28)

+
1
2
τ2
〈∣∣: HM (γ, τ)2 :

∣∣〉
c

+ ...

]
,

we get

G2(r, t; r ′, t′) = −e(t−t′−β)( 1
2−µ)N

Z

∑
u0,k∈ν1/φ̃

e−iφ̃ α(r−r ′)

× ∂

∂γ
FM [γ, t− t′]

∣∣∣∣∣
γ=0

. (29)
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The derivation with respect to γ of FM [γ, t− t′] at γ = 0
is given by

∂

∂γ
FM [γ, τ ]|γ=0 = FM [0, τ ]

∂

∂γ
(30)(

−τ 〈|: HM (γ, τ) :|〉c+
1
2
τ2
〈∣∣: HM (γ, τ)2 :

∣∣〉
c

+ ..

)∣∣∣∣
γ=0

.

We now split HN+1 (27) in its components

HN+1 =
N∑
i=1

(
1
2

[−i∇i+A(ri)]
2− µ

)
+

1
2

N∑
i=1

φ̃2f(ri − r ′)2

+

(
−N φ̃

2
+

N∑
i=1

φ̃f(ri − r ′)
∇i

i

)
· (31)

As in the last subsection, we use the Campbell-Hausdorff
formula (18) to isolate H0,1 from HN+1 and 1/2[−i∇r′ +
A(r ′)]2 from 1/2[−i∇r′ +A(r ′)− φ̃f(r ′− r)]2. We now
set r ′ = 0. Then we can use the commutator analysis of
appendix A and the results of the last subsection. First,
we get that the second term of the product in (30) does
not contain any terms of the form

∑
1/p (under the con-

sideration that the lth derivative of up(r ′) with respect
to r ′ is at the position r ′ = 0 zero for all p > l). The first
term in the product (30) is given by

G2(r, τ)τ>0 = (32)∑
u0,k∈ν1/2

exp

[
φ̃2

{ ∑
up∈u0,k

1
p

(
− 1

4
r2 − 1

4
τ +

1
8
τ2 − 1

24
τ3

+O(τ4)
)

+O

(
1
p2

)
+

∑
up,up+1∈u0,k

1
p

1
4
r2+O

(
1
p2

)}]
.

We see from G2(r, τ)τ>0 that the
∑

1/p coefficients of
the higher order τ terms (τ > 3) have no r dependence.
Furthermore, one gets from the form of HN+1 and the
relation (16) that the higher order τ terms have not to be
zero.

2.3 Averaging of the Green’s function with respect
to the ground states

From the equations (20, 32), we have to calculate an ex-
pression of the following form

G(r, τ) =
∑

u0,k∈ν1/φ̃

exp
[ ∑
up∈u0,k

(φ̃2f1(r, τ))
1
p

+O

(
1
p2

)

+
∑

up,up+1∈u0,k

(φ̃2f2(r, τ))
1
p

+O

(
1
p2

)]
1∑

u0,k∈ν1/2

1
· (33)

f1(r, τ) and f2(r, τ) are real functions of (r, τ).

In the following, we will show that the asymptotic be-
haviour of the result is given by

G(r, τ) = exp
[
−2
(
φ̃f1(r, τ) + f2(r, τ)

)
log(c) +O(1)

]
.

(34)

Here c is proportional to 1/
√
A. So we get log(c) =

− 1
2 log(N) +O(1). With the help of the expression

E[u0,k] = (35)∑
up∈u0,k

(φ̃2f1(r, τ))
(

1
p
− 1
Nφ̃

(log(N) + C)
)

+O
(

1
p2

)

+
∑

up,up+1∈u0,k

(φ̃2f2(r, τ))
(

1
p
− 1
Nφ̃2

(log(N) + C)
)

+O
(

1
p2

)
,

the asymptotics (34) is correct if we show that the follow-
ing expression K is finite for A→∞:

K =
∑

u0,k∈ν1/φ̃

exp [E [u0,k]]
1∑

u0,k∈φ̃
1
· (36)

C is the Euler number which is defined by
∑N
p=1 1/p =

log(N) + C +O(1/N). We will determine K by the calcu-
lation of the moments Mn of the operator exp[E(u0,k)].
The moments are defined by Mn =

∑
u0,k∈ν1/2

(E[u0,k])n ·
1/(
∑
u0,k∈ν1/2

1). From this definition we obtain M0 = 1.
For calculating M1, we use the following transforma-

tion

1∑
u0,k∈ν1/φ̃

1

∑
u0,k∈ν1/2

∑
up∈u0,k

1
p

=
1∑

u0,k∈ν1/φ̃

1

N∑
p=1

1
p

(
N − 1
N
φ̃
− 1

)

=
1
φ̃

(
log(N) + C +O

(
1
N

))
, (37)

1∑
u0,k∈ν1/φ̃

1

∑
u0,k∈ν1/2

∑
up,up+1∈u0,k

1
p

=
1∑

u0,k∈ν1/φ̃

1

N∑
p=1

1
p

(
N − 2
N
φ̃
− 2

)

=
1
φ̃2

(
log(N) + C +O

(
1
N

))
· (38)

Thus, we get that M1 is finite.

For calculating the higher moments, we will show at
first that A(M1+M2) is finite. A(M1+M2) is defined by

A(M1+M2) = lim
N→∞

∑
u0,k∈ν1/φ̃

[
M2∏
i′=1

 ∑
up∈u0,k

1
pm
′
i

ni′

(39)

×
M1∏
i=1

 ∑
up∈u0,k

(
1
p
− 1
Nφ̃

(log(N) + C)
)ni 1
pmi

 1∑
u0,kν1/φ̃

1

]
.
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We are interested in A(M1+M2) for the values ni ≥ 1,mi′ ≥
2, mi ≥ 2 or mi = 0. To show the finiteness of A(M1+M2)

we carry out a proof by induction.
Because of the equations (37, 38) and the finiteness of∑
up∈u0,k∈ν1/2

1/pn for n ≥ 2 we get that A1 is finite. For
J > 1 we can split AJ in the following two terms:

AJ = lim
N→∞

∑
u0,k∈ν1/2

[ ∑
upi

,up
i′ ∈u0,k

pi 6=pi′

M2∏
i′=1

(
1

p
mi′
i′

)
(40)

×
M1∏
i=1

(
1
pi
− 1
Nφ̃

(log(N) + C)
)ni

×
(

1
pmii

)
1∑

u0,k∈ν1/2

1

]
+AJ−1.

By pi 6= pi′ we mean that all pi, pi′ are different. Due to
the induction assumption, we only have to discuss the first
term AJ,1 in AJ . With the help of the induction assump-
tion we get for AJ,1 as in the calculation of M1

AJ,1 =
1

φ̃|M1|+|M2|

M1∏
i=1

M2∏
i′=1

N∑
pi,pi′=1

[(
1

p
mi′
i′

)
(41)

(
1
pi
− 1
Nφ̃

(log(N) + C)
)ni ( 1

pmii

)]
+ finite .

From this we see that AJ,1 is finite. Thus, we get the finite-
ness of A(M1+M2) for N →∞.

Summarizing, we obtain the finiteness of Mn for ev-
ery n if f2(r, τ) = 0. It is easy to generalize the con-
siderations above to the case of f2(r, τ) 6= 0. Thus the
Chern-Simons Green’s function G(r, τ)τ>0 has the form
of equation (34). With the help of (20) and (32) we
get for the asymptotic behaviour of the Green’s function
G(r, τ)τ>0 = G1(r, τ)τ>0 +G2(r, τ)τ>0

G1(r, τ)τ>0 ∼ exp

[
− 2φ̃ log(c)

{
−
(

1
2
− 1

4φ̃

)
B

m
τ

+
1
8

(
B

m
τ

)2

−
(

1
48

+
1

48φ̃

)(
B

m
τ

)3

+O(τ4)

}]

× exp
[
−τ 1

2m
[−i∇r +A(r)]2

]
δ(r) (42)

and

G2(r, τ)τ>0 ∼ exp

[
−2φ̃ log(c)

{
−
(

1
4
− 1

4φ̃

)
B

m
r2

−1
4
B

m
τ +

1
8

(
B

m
τ

)2

− 1
24

(
B

m
τ

)3

+O(τ4)

}]
· (43)

2.4 The asymptotic behaviour of the Chern-Simons
Green’s function G(r, τ)τ<0

In this subsection, we calculate the Chern-Simons Green’s
function G(r, τ)τ<0 for τ < 0. At first, we define a wave
function originating from a ν = 1/φ̃ wave function in
which a particle at position r is annihilated. This wave
function is given by

u′0,k(r1, ..rN−1; r) :=
N∑
i=1

∫
dri u′0,k (r1, ..rN ) δ(ri − r)

(44)

(in the definition of equation (44) we implicitly carried out
a renaming of the indices). Similar to our calculation in
subsection A we get for t− t′ < 0 from the definition (3)

G(r, t; r ′, t′) =
e((t′−t)−β)( 1

2−µ)N

Z
(45)

×
∑
u0,k

〈
u′0,k(r1, .., rN−1; r)

∣∣∣∣
× exp

[
−iφ̃

(
N−1∑
i=1

α(ri − r)− α(ri − r ′)
)]

× exp
[
−(t′ − t)HN

] ∣∣∣∣u′0,k(r1, .., rN−1; r ′)
〉

with the Hamilton operator

HN =
N−1∑
i=1

1
2

[
−i∇i +A(ri) + φ̃f(ri − r ′)

]2
. (46)

As in the last subsections, we split HN in its components

HN =
N−1∑
i=1

(
1
2

[−i∇i+A(ri)]
2− µ

)
+

1
2

N−1∑
i=1

φ̃2f(ri − r ′)2

+

(
−(N − 1)

φ̃

2
+
N−1∑
i=1

φ̃f(ri − r ′)
∇i
i

)
· (47)

Now we can use the commutator analysis of Appendix A
and the results of the last subsections to get for the Chern-
Simons Green’s function G(r, τ)τ<0

G(r, τ)τ<0 ∼ exp

[
− 2φ̃ log(c)

{
−
(

1
4
− 1

4φ̃

)
B

m
r2

+
1
4
B

m
τ +

1
8

(
B

m
τ

)2

+
1
24

(
B

m
τ

)3

+O(τ4)

}]
· (48)

By taking the limit A → ∞ we get from the equations
(42, 43) and (48) that the Chern-Simons Green’s func-
tion G(r, τ) vanishes exponentially for τ > 0 as well
as for τ < 0. This is illustrated in Figure 1 where we
show the function log(G)/(−4 log(c)) for the ν = 1/2
system. G is either the first factor in (42) for r = 0 or
G = G(0, |τ |)2

τ>0 = G(0, |τ |)τ<0 (43, 48).
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Fig. 1. log(G)/(−4 log(c)) for the ν = 1/2 system where G
is either the first factor in (42) for r = 0 (dashed line), or
G = G2(0, |τ |)τ>0 = G(0, |τ |)τ<0 (solid line).

The vanishing of the Green’s function can be explained
by the boundedness of the Green’s function (easily ob-
tained from the definition (3)). It is an interesting ques-
tion if the log(c) behaviour is also true when consider-
ing also higher τ terms in the concrete calculation of the
Green’s function. Since the number of summands of the
Campbell-Hausdorff formula grows very fast for large τ
we think there is no easy answer to this question. As men-
tioned above, we are primary interested in this paper in
the Green’s function for small τ . So instead of considering
further this question, we investigate the asymptotics of the
Chern-Simons Green’s function taking into consideration
the Coulomb interaction.

2.5 The asymptotics of the Green’s function taking
into consideration the Coulomb interaction

In the case of the Chern-Simons theory taking into con-
sideration the Coulomb interaction the ground state u0

consists of a superposition of slater determinants which
consists of Landau wave functions of the lowest as well
as of higher Landau levels. In the following, we make
the approximation that we consider in u0 only that part
which consists of wave functions in the lowest Landau
level. This restriction on the wave function is a stan-
dard approximation to calculate for example the ground
state energy or the effective mass of the composite
fermions [16]. The ground state wave function is given by
u0 =

∑
p∈NN0

cp S [up1 , up2 , ...]. The coefficients cp under-

lie the restriction
∑
p∈NN0

|cp|2 = 1. This is a result of the
normalization of u0. To get insight into the Chern-Simons
Green’s function taking into account the Coulomb interac-
tion, we can transform the Green’s function similar to (6)
and (45) with an additional sum over the slater deter-
minants of u0. With the help of the Campbell-Hausdorff
formula we separate similarly to the last subsections the
Hamilton operator H0 from the rest of the operators in
HN+1 + HN+1, HN+1 orHN (H0 also consists of the
Coulomb part of the Hamilton operator). Suppose at first
the restriction that the two Slater determinants which are
the ingredients of the average values in (6) and (45) are

not in agreement in their Landau wave functions upi for
i = 1, .., NC with NC ≤ N . Furthermore, suppose that
N −NC is finite for A → ∞. Then we get that the aver-
age value of eB (19) with respect to these two Slater de-
terminants behaves as.

∏
i=1,..,NC

1/p1/4
i . e−1/4NC (the

Coulomb operator in a scalar product between two Slater
determinants of Landau wave functions upj j = 1, .., 4
scales like ∼ Min[

√
1/pj]. Here Min[·] is the minimum of

its argument). Since NC ∝ A for A→∞, we see that the
average value with respect to the two Slater determinants
vanishes exponentially for A→∞.

In the following, we consider the case of no re-
strictions on the variables N , NC . Then we get
from the equations (15, 33) that the asymptotic
form of the summands of the Green’s function be-
haves as . e−1/4NCe−f(r,τ,N,e2) log(N−NC) f(r, τ,N, e2)
is given by f(r, τ,N, e2) = f(r, τ)(

∑
j=1..N (1/pj) −∑

i=1..NC
(1/pi))/ log(N − NC) (we neglect the nearest

neighbour sum in (33)). Furthermore, we have 0 ≤
limN→∞ f(r, τ,N, e2) ≤ f(r, τ) (limN→∞ f(r, τ,N, e2) has
not to be convergent). Thus, we get that the maxi-
mum of the summands of the Green’s function is given
by equal Slater determinants of which the average val-
ues (6) and (45) are built. Summarizing, we get also
in the case of the Chern-Simons theory taking into ac-
count the Coulomb interaction the asymptotics (42, 43)
and (48) of the Green’s function, whereby we have to re-
place log(c) by V (e2, c) log(c) in these formulas. V (e2, c)
is a function of the Coulomb coupling constant e2 with
0 ≤ limc→0 V (e2, c) ≤ φ̃ and limc→0 V (0, c) = 1. In
principle V (e2, c) may have the limit limc→0 V (e2, c) =
0 for some e2. Then we get that the Green’s function
does not vanish exponentially for A → ∞. Moreover
limc→0 V (e2, c) does not have to be continuous at e2 = 0
for temperature T = 0. By considering the Green’s func-
tion for T > 0 (and limit the Hilbert space to the
lowest Landau level) we get for the asymptotics of the
Green’s function the equations (42, 43) and (48) with
the replacement log(c) by V (e2, c) log(c) where V (e2, c)
is a function of the temperature. For T > 0 the limit
limc→0 V (e2, c) has to be continuous at e2 = 0 with
lime2→0 limc→0 V (e2, c) = 1. Thus also in the case of
the Chern-Simons theory taking into consideration the
Coulomb interaction, we obtain an asymptotic behaviour
of the Green’s function which vanishes for A→∞ .

We should remark a consequence of the asymp-
totic behaviour of the Green’s function. By insert-
ing between the creation and the annihilation opera-
tor in (3) a complete set of eigen functions of the
Hamiltonian HCS, we get that the overlap between
the wave functions A[u0(r1, .., rN ), δ(rN+1 − r)] or∑N
i=1

∫
driu0(r1, .., rN)δ(ri − r), respectively, and the

eigen functions of the Hamilton operator HCS with N + 1
or N − 1 particles, respectively, vanishes for A→∞.
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3 The Green’s functions in the Hartree-Fock
approximation as well as in the RPA

When calculating physical quantities perturbatively the
mean field Green’s function of the perturbation theory
should have a similar form as the exact Green’s function.
In the following, we compare the asymptotic behaviour of
the Green’s function in the Hartree-Fock approximation as
well as in the RPA with the exact Green’s function to make
a step towards to this perturbation theory. We will show
that in contrast to the RPA Green’s function the Hartree-
Fock Green’s function has a similar asymptotic behaviour
as the exact Green’s function. Because in a perturbation
theory with auxiliary fields one usually takes as a start-
ing point a Green’s function [18] which is determined self
consistently, we will calculate the self consistent Hartree-
Fock Green’s function and compare the calculated density
of this Green’s function with the exact particle density.
Since the Chern-Simons interaction is the reason for the
asymptotic vanishing form of the Chern-Simons Green’s
for A→∞, we neglect at first the Coulomb interaction.

It is easy to calculate the Hartree-Fock approxi-
mation of the Green’s function of the Chern-Simons
Hamiltonian (2) for A→∞. One gets

ΣHF(q, kF) =
φ̃2

4
k2

F

m

[
log(4c2) (49)

− log
(

2
√

(k2
F + q2 + c2)2 − 4q2k2

F + 2k2
F + 2(c2 − q2)

)]
− φ̃

2

4
k2

F

m
log
(
c

kF

)
+Σf(q, kF) .

As in the last section c is an impulse cut off in the in-
frared region. To get ΣHF(q, kF) we calculated all Hartree-
Fock Feynman diagrams by inserting the interaction free
Green’s function G(q, ω) = −1/(iω − q2/(2m) + µ). For
this Green’s function the Fermi momentum kF is given
by kF =

√
2mµ. By pairing the outer creation and anni-

hilation operator in (2) we get an effective two particle
operator which scales in the momentum like ∼ 1/q2. The
first summand in (49) represents the exchange diagram
of this vertex. The rest of the diagrams which diverge for
c → 0 are given by the second summand. This term is
given by a diagram of the Hartree form. The last term Σf

is finite for c→ 0 . The Hartree-Fock Green’s function was
also calculated by Sitko and Jacak [12] before. Carrying
out the limit c→ 0 in (49) we get

ΣHF(q, kF) =
φ̃2

4
k2

F
m

[
log
(
c
kF

)
− log

(
k2

F−q2
k2

F

)]
+Σf (q, kF) q < kF

− φ̃
2

4
k2

F
m

[
log
(
c
kF

)
− log

(
q2−k2

F
q2

)]
+Σf(q, kF)q > kF

Σf(kF, kF) q = kF.
(50)

Thus, we see that ΣHF is finite on the Fermi surface
(q = kF). This is accomplished by the changing of the sign

of the log(c) singularity on the Fermi surface. We now cal-
culate the Fourier (time) transform of the Hartree-Fock
Green’s function (the Green’s function which includes the
Hartree-Fock self energy ΣHF). In the leading c order, we
get for this Green’s function

1
2π

∫
dω GHF(q, ω) e−iωτ (51)

= − e[−
�
q2

2m−µ
�
− φ̃

2

4
k2
F
m log(c/kF)] τ

nF(q) Θ(−τ)

+ e[−
�
q2
2m−µ

�
+ φ̃2

4
k2
F
m log(c/kF)] τ (1− nF(q)) Θ(τ) .

Here nF(q) is the Fermi factor nF(q) =
1/(exp[β(q2/(2m) − µ)] + 1). When carrying out the
Fourier transformation with respect to q and comparing
the result with the asymptotics (42, 43) and (48) of the
exact Chern-Simons Green’s function we obtain that the
two asymptotics are in accordance for small τ and r = 0.
Furthermore, we see that the prefactor of the log(c/kF )
term in GHF(q, ω) is equal to the exact Green’s function.

Next, we calculate the Chern-Simons Green’s function
in RPA. For doing this we use the path integral in [17]
which includes the bosonic Chern-Simons fields. This path
integral correspondence to the path integral of HLR [3] up
to one additive term in the action. This additive term is
necessary to reproduce the correct ordering of the oper-
ators [17] in the Chern-Simons Hamiltonian (2). In [17],
we calculated the grand canonical potentialΩRPA from this
path integral in RPA. In the following, we will calculate
the RPA self energy through ΣRPA = δΩRPA/(δG). After
some calculation, ΣRPA is given in the leading c order by

ΣRPA(q, ω) = (52)

φ̃2µ

2
log
(
c

kF

) (
iω − q2

2m + µ
)

(
ωc + sgn

[
q2

2m − µ
] (

q2

2m − iω − µ
)) ·

Here, ωc is given by B/m. sgn[·] is the sign of the ar-
gument. We see from this self energy formula that the
prefactor of the log(c) term gets a non trivial frequency
dependence. We should mention that the asymptotic be-
haviour (52) of the RPA self energy is also correct in the
case of taking into account the Coulomb interaction be-
tween the electrons.

As in the case of the Hartree-Fock self energy, we will
calculate in the following the Fourier time transformation
of ΣRPA. For doing this, we have to solve the equation
iω − q2

2m + µ − ΣRPA = 0, representing a quadratic equa-
tion in the frequencies. The two frequency solutions cor-
respond to two additive terms of the Fourier transform of
ΣRPA. One of the solutions of this quadratic equation is
given by iω = (2nF(q) − 1) φ̃2 µ log(c/kF). This solution
corresponds to a term in the Fourier transformed RPA
Green’s function which has the correct asymptotics of the
exact Green’s function for c → 0. The other solution is
finite for c → 0. Thus, the corresponding additive term
in the RPA Green’s function is finite for c → 0 (modulo
logarithmis singularities). Summarizing, the RPA Green’s
function has not the asymptotic behaviour of the exact
Chern-Simons Green’s function for A→∞.
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So far, we did not take into account the self consistence
of the approximation of the Green’s function. Usually one
has to use a self consistent approximation of the Green’s
function in a perturbation theory (e.g. [18]). Thus, we will
calculate in the following the self consistent Hartree-Fock
Green’s function in the leading c order. The self consistent
Hartree-Fock self energy in the leading c order is a solution
of the following equation

ΣHF
sc (q) =

φ̃2

4
k2

F

m

[
log
(
c

kF

)
nF(q,ΣHF

sc (q))

− log
(
c

kF

)(
1− nF(q,ΣHF

sc (q))
) ]

+Σf
sc(q) . (53)

Here nF(q,ΣHF
sc ) is the Fermi factor nF(q,ΣHF

sc ) =
1/(exp[β(q2/(2m) +ΣHF

sc (q)−µ)] + 1). Σf
sc(q) is for c→ 0

the finite part of the Hartree-Fock self energy calculated
with the self consistent Hartree-Fock Green’s function
GHF
sc (q, ω) = −1/(iω − q2/(2m) − ΣHF

sc (q) + µ). In the
leading c order this self consistent equation is solved by
(T = 0)

ΣHF
sc (q, k∗F) =

φ̃2

4
(k∗F)2

m
log
(
c

k∗F

)
(2Θ(q − kF)− 1) (54)

provided that the Fermi momentum k∗F solves the follow-
ing equation

(k∗F)2

2m
− µ+Σf (k∗F, k

∗
F) = 0 . (55)

In order to fix k∗F, we do not have to calculate the fi-
nite part Σf (q, k∗F) of the Hartree-Fock self energy. By
using the equation lim

β→∞
β
∫

d2k nF(k) (1 − nF(k))F (k) =∫
d2k δ(|k| − kF)F (k) we get that Σf (k∗F, k

∗
F) is given by

Σf (k∗F, k
∗
F) =

(2π)
m

∂

∂µ
UHF((k∗F)2/(2m), B)−

(
(k∗F)2

2m

)
·

(56)

UHF(µ,B) is the Hartree-Fock energy of the Chern-Simons
Hamiltonian (2) (containing the kinetic energy). We em-
ployed in (56) the mathematic notation for the ordering
of the derivation and insertion of the arguments of the
functions. This means for equation (56) that we have to
partially derivate at first the function UHF(µ,B) depend-
ing on the variables (µ,B). Afterwards we have to insert
the expressions given in the function brackets. B is the
external magnetic field. The Hartree-Fock energy of the
ν = 1/φ̃ system is given by [19,20]

UHF(µ, φ̃mµ) =
m

4π
µ2 +

3m
16π

φ̃2µ2 . (57)

Since we calculate UHF(µ,B) in (57) for B = φ̃mµ it is
not correct to insert (57) in (56). This was shown in [21]
generally in the case of the determination of µ through the
equation −∂Ω/(∂µ) = N/A. Here Ω is the grand canoni-
cal potential of the Chern-Simons system. We obtained in

Fig. 2. The self energy graph Σc.

the paper [21] that one gets a correction to this equation if
Ω is calculated under the constraint B = 2πφ̃N/A. With
the help of the derivations in this paper it is easy to see
that the following equation results in the correct k∗F

Σf (k∗F, k
∗
F)=

(2π)
m

∂

∂µ
UHF

ν=1/φ̃

(
(k∗F)2

2m

)
+Σc(k∗F)−

(
(k∗F)2

2m

)
·

(58)

Here UHF

ν=1/φ̃
(µ) is given by UHF

ν=1/φ̃
(µ) := UHF(µ, φ̃mµ).

The self energy diagram Σc is shown in Figure 2. By
closing the open ends of the self energy diagram by an
interaction free Green’s function we see that the result-
ing Ω diagram is canceled under the condition B = φ̃mµ
with a diagram where this Green’s function is replaced by
a coupling to the external magnetic field B. Furthermore,
we see from the figure that the momentum transfer to
the external coupling is zero for an infinite system. Thus,
we get difficulties in calculating this diagram (because
limq→0 f(q) = ∞). We showed in [21] that the correct
way to calculate this diagram is to calculate the integrals
of the diagram for a finite system taking at last the limit
A→∞. By doing this we get

Σc(q) = − 1
m

(2πφ̃)2

(2π)4
(59)

× lim
q→0

∫
d2k1d

2k2nF (|k1 − k2|)nF (|k2 − q|)
k1

|k1|2
q

|q|2 ·

To calculate the double integral we expand nF(|k2 − q|)
for small q and T > 0. By carrying out the integration we
get

Σc(q) = −φ̃2µ . (60)

By inserting (57) and (60) in equation (58) we get with
the help of (55)

(k∗F)2

2m
=

µ

(1 + φ̃2

4 )
· (61)

In the following, we will make a similar calculation neglect-
ing Σc(q) in (58). We denote k̃∗F by the Fermi momentum
which is calculated through the equations (55, 58) with
Σc(k) = 0. This Fermi momentum is given by

(k̃∗F)2

2m
=

µ

(1 + 3
4 φ̃

2)
· (62)
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Now we calculate the density of the system by us-
ing the self-consistent Hartree-Fock Green’s function.
With the help of GHF

sc (q, ω, k∗F) = −1/(iω − q2/(2m) −
ΣHF
sc (q, k∗F) + µ) we get for the electron density N/A =∑
ω

∑
q G

HF
sc (q, ω, k∗F)eiωη (η is an infinite small positive

parameter) with µ = (2π)mN/A for the ν = 1/2 sys-
tem we get 1/2 of the electron density. In contrast to
this the trace over the exact Green’s function is given by
the electron density. In the paper [21], we showed that
−∂Ω′(µ,∞)/(∂µ) = 0. Ω′(µ, β) is the grand canonical
potential of the ν = 1/φ̃ system which is calculated under
the constraint B = (2πφ̃)N/A. From this equation it is
clear that

∑
ω

∑
q G

HF
sc (q, ω, k̃∗F)eiωη should be zero to be

a good approximation. For the ν = 1/2 system, we get for
this expression with µ = (2π)mN/A, 1/4 of the electron
density. Thus, we get the correct relation between the den-
sities calculated with the help of the Hartree-Fock Green’s
function GHF

sc (q, ω, k∗F) and GHF
sc (q, ω, k̃∗F). When formulat-

ing a perturbation theory for the grand canonical poten-
tial which uses the Hartree-Fock Green’s function as the
mean field Green’s function we have to use GHF

sc (q, ω, k̃∗F)
because (as discussed above) insertions of the self energy
Σc in Ω diagrams are cancelled by B coupling diagrams.
The formulation of this theory will be published in a later
paper.

Until now we did not take into account the Coulomb
interaction. By this interaction we obtain in the Hartree-
Fock approximation an additional Fock diagram including
the Coulomb vertex. This Coulomb diagram is finite. Thus
we get also in this case an asymptotic Green’s function of
the form (51). This is also in agreement with the results
of Section 2.5. At last, we have to mention that we obtain
a difference for Σc from the result of Sitko and Jacak [12]
(they calculated Σc = 0). The reason is that they did not
take the limit A→∞ at the end of the calculation of Σc.

4 Conclusion

In this paper, we calculated the asymptotic form of the
ν = 1/φ̃ Chern-Simons Green’s function for an infinite
area A non-perturbationally. This was done concretely
for the Coulomb free ν = 1/φ̃ Chern-Simons theory. We
obtain that the asymptotics of the Green’s function be-
haves as G(r, τ) ∼ e−f(r,τ) log(A). Due to the sign of τ
the function f(r, τ) can be written as two different power
expansions in τ . We calculated f(r, τ) to the third order
in τ . Due to this calculation we get that f(r, τ) results
in a positive function. It would be interesting to see if
this is also true considering higher powers of τ . Next, we
discussed the asymptotic behaviour of the Green’s func-
tion for the Chern-Simons theory taking into considera-
tion the Coulomb interaction. We obtain (for temperature
T > 0) the same asymptotics as for the Green’s function
of the Chern-Simons theory without Coulomb interaction
(in this case f(r, τ) depends also on the Coulomb coupling
constant e2).

In Section 3, we examined the Green’s function of the
Chern-Simons theory in the Hartree-Fock approximation

as well as in the RPA without Coulomb interaction. We
obtained that the asymptotics of the Hartree-Fock ap-
proximation of the Green’s function behaves for r = 0
and small τ similar to the asymptotics of the exact one.
Especially the prefactor of the log(A) term of the Hartree-
Fock Green’s function is the same as of the exact Green’s
function. Next, we calculated the asymptotic behaviour of
the RPA Green’s function. We showed that this Green’s
function is finite for A → ∞. This is not in correspon-
dence with the exact Green’s function. On the way to
formulate a perturbation theory around the Hartree-Fock
mean field, we examined the self consistent Hartree-Fock
Green’s function. We solved the self consistence equa-
tion in the leading 1/A order. We obtain a self consis-
tent Hartree-Fock Green’s function which behaves similar
to the Hartree-Fock Green’s function with the difference
that it has a different Fermi momentum. We obtained that
the density of the electrons calculated with the help of
the self consistent Hartree-Fock Green’s function is 1/2 of
the exact density (for the ν = 1/2 system). Furthermore,
we calculated the self consistent Green’s function without
one of the Hartree-Fock self energy diagrams which is zero
when inserted in Ω diagrams. The electron density which
is calculated with the help of this Green’s function is 1/4
of the exact electron density (for the ν = 1/2 system). It
was shown by us in [21] that the electron density calcu-
lated with this truncated Green’s function should be zero.
At last we obtained that the asymptotics of the Green’s
function in the Hartree-Fock approximation by taking into
account the Coulomb interaction has the same form as the
Green’s function without Coulomb interaction. This is in
accordance with the exact results of Section 2.

By taking the asymptotics of the Green’s function se-
riously with respect to the principles of perturbational
many-body theory we now have two options to go fur-
ther. First, we may establish a theory which integrates
the log(A) singularity by using the Hartree-Fock Green’s
function as the mean field Green’s function. This theory
was formulated by us in [20]. It is our purpose to pub-
lish the results in a subsequent paper. Second, we may
establish other formulations of the Chern-Simons theory
(i.e. [9,11]) in the hope to get a well behaved Green’s
function. One may think that this could be reached by
the theory of Shankar and Murthy [9] speculated earlier.
This assumption is in contrast to [10] where it was shown
in RPA that one gets also a singular self energy in this
theory (for temperature T = 0).

We would like to thank K. Luig and W. Weller for many helpful
discussions during the course of this work. Further we have to
acknowledge the financial support by the Deutsche Forschungs-
gemeinschaft, Graduiertenkolleg “Quantenfeldtheorie”.
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Appendix A: The commutators
for the calculation of the Chern-Simons
Green’s function

With the help of the equation (16) we get from (7) to
order τ3 cumulant expectation values of the operator
HN+1 + HN+1 of the form

∑
up∈u0,k

1/p + O(1/p2) and∑
up,up+1∈u0,k

1/p + O(1/p2). The terms of the form∑
up∈u0,k

1/p + O(1/p2) are given by (we write down
only these terms of the expectation value which scales as∑

1/p).

〈u0,k | [H4,1, [H0,1,H4,1]] |u0,k〉c= φ̃2 1
2

∑
up∈u0,k

1
p
,

〈u0,k | [H0,1,H4,1] (H4,1 +H3) |u0,k〉c=−φ̃
2 1

4

∑
up∈u0,k

1
p
,

〈u0,k | (H4,1 +H3) [H0,1,H4,1]|u0,k〉c= φ̃2 1
4

∑
up∈u0,k

1
p
,

〈u0,k | [H4,2, [H0,1,H4,1]] |u0,k〉c= φ̃2 3
8

∑
up∈u0,k

1
p
,

〈u0,k |H4,2 [H0,1,H4,1] |u0,k〉c= φ̃2 3
8

∑
up∈u0,k

1
p
,

〈u0,k | [H4,1, [H0,2,H4,1]] |u0,k〉c= φ̃2 1
8

∑
up∈u0,k

1
p
,

〈u0,k | [H0,2,H4,1] (H4,1 +H3) |u0,k〉c=−φ̃
2 1

8

∑
up∈u0,k

1
p
,

〈u0,k | [H4,1, [H0,2,H4,2]] |u0,k〉c= φ̃2 1
8

∑
up∈u0,k

1
p
,

〈u0,k | [H0,2,H4,2] (H4,1 +H3) |u0,k〉c=−φ̃
2 1

8

∑
up∈u0,k

1
p
,

〈u0,k | [H4,2, [H0,2,H4,1]] |u0,k〉c= φ̃2 1
8

∑
up∈u0,k

1
p
,

〈u0,k |H4,2 [H0,2,H4,1] |u0,k〉c= φ̃2 1
8

∑
up∈u0,k

1
p
,

〈u0,k | [H4,2, [H0,2,H4,2]] |u0,k〉c= φ̃2 1
8

∑
up∈u0,k

1
p
,

〈u0,k |H4,2 [H0,2,H4,2] |u0,k〉c= φ̃2 1
8

∑
up∈u0,k

1
p
·

(A1)

We get the remaining terms of the form∑
up,up+1∈u0,k

1/p + O(1/p2) of the cumulant expec-
tation value of the operator HN+1 + HN+1 by dropping
the first three terms in the above list and substituting∑
up∈u0,k

by −
∑
up,up+1∈u0,k

.

References

1. D.C. Tsui, H.L. Störmer, A.C. Gossard, Phys. Rev. Lett.
48, 1559 (1982); D.C. Tsui, H.L. Störmer, A.C. Gossard,
Phys. Rev. B 25, 1405 (1982).

2. J.K. Jain, Phys. Rev. Lett. 63, 199 (1989).

3. B.I. Halperin, P.A. Lee, N. Read, Phys. Rev. B 47, 7312
(1993).

4. V. Kalmeyer, S.C. Zhang, Phys. Rev. B 46, 9889 (1992).

5. W. Kang et al., Phys. Rev. Lett. 71, 3850 (1993).

6. J.H. Smet et al., Phys. Rev. Lett. 77, 2272 (1996).

7. R.L. Willet, Adv. Phys. 46, 447 (1997).

8. A. Stern, B.I. Halperin, Phys. Rev. B 52, 5890 (1995).

9. R. Shankar, G. Murthy, Phys. Rev. Lett. 79, 4437 (1997).
10. A. Stern, B.I. Halperin, F.v. Oppen, S.H. Simon, Phys.

Rev. B 59, 12547 (1999).

11. V. Pasquier, F.D.M. Haldane, Nucl. Phys. B 516, 719
(1998); N. Read, Phys. Rev. B 58, 16262 (1998); D.-H.
Lee, Phys. Rev. Lett. 80, 4547 (1998)

12. P. Sitko, L. Jacak, Mod. Phys. Lett. B 9, 889 (1995).

13. S.H. Simon in Composite Fermions, edited by O. Heinonen
(World Scientific, Singapore, 1998).

14. B.I. Halperin in Perspectives in QHE, edited by Das
Sarma, Pinczuk (J. Wiley, NY, 1997).

15. S.C. Zhang, Int. J. Mod. Phys. B 6, 25 (1992).

16. R. Morf, N. d’Ambrumenil, Phys. Rev. Lett. 74, 5116
(1995).

17. J. Dietel, Eur. Phys J. B 19, 195 (2001).

18. J.W. Negele, H. Orland, Quantum Many-Particle Systems,
(Addison-Wesley New York, 1994).

19. P. Sitko, Phys. Lett. A 188, 179 (1994).

20. J. Dietel, Ph.D. thesis, University of Leipzig (2000) (un-
published).

21. J. Dietel, Eur. Phys. J. B 22, 43 (2001).


